EFFECT OF HIGH STOCKING DENSITY ON GROWTH AND SURVIVAL IN DIFFERENT LIFE STAGES OF Litopenaeus vannamei IN BFT CULTURE SYSTEM

Wilson Wasielesky Jr.*, Charles Fróes, Adriana Silva, Dariano Krummenauer, Geraldo Foes and Luis Henrique Poersch

Federal University of Rio Grande, Institute of Oceanography, Laboratory of Mariculture - Brazil

Shrimp culture in 80's

Low stocking densities – 3, 7, or 10/m²

Productivities about 0.3-1.0 ton/ha/year

Shrimp culture in 90's

Higher stocking densities – 10 to 30/m²

Productivities about 1.0 to 6.0 ton/ha/year

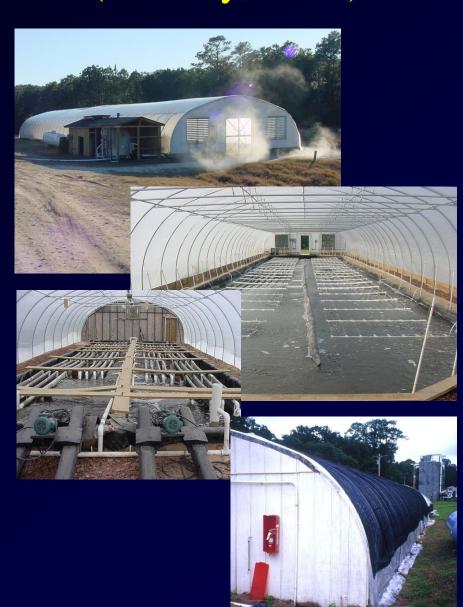
Waddell Mariculture Center –SC - USA Sustainable Intensive Shrimp Culture Research

During 90: s

- Hopkins et al.,1995:
- Productivity around 5000/ha/crop Litopenaeus vannamei
- -Zero or reduced water exchange.

Stocking densities – 50 70/m²

Browdy, 2001:


- Higher production up to 10 ton /ha/crop
- Superintensive shrimp culture system biofloc based
- Stocking densities higher than 100/m²

Belize Aquaculture Ltda

Looking to the Future Next Generation Systems (Browdy, 2001)

- Sistemas Fechados e Bioseguros com avançada engenharia
- Higher production per area unit
- e multiplas safras por año.
 Menor custo de produccion
- Uso de post-larvae libre de patogenos y selecionados para crescimiento rapido
- Sistema automaticos para reduzir uso de agua.
- Baja salinidad y reuso da agua.

WMC Raceway Harvest Data

	Nov	7.00	Jan. 02		Mar. 03	Nov. 04	
Days	140	140	132	132	140	76*	113
Density	200	200	300	300	300	300	420
Mean Wt (g)	19.3	18.9	14.6	15.4	17.1	16.6	21.0
Survival (%)	60.1	63.9	70.5	71.7	55.2	91	79.5
Production (kg/m)	2.3	2.4	3.1	3.3	2.8	4.5	6.8
FCR	2.8	2.8	1.8	2.0	1.9	1.5	1.9

^{*} Stocked nursed juveniles

Highest production in raceways (USA)

2008 - In Oceanic Institute (Hawaii, EUA), Otoshi *et al.* reported 10.3 kg/ m² (103 ton/ha) . Initial stocking density of 828 Shrimp/m² (Final stocking density of 562 shrimp/m² .

2009 – Recently Samocha, et al reported production up to 9.75 kg/m3 in Corpus Christi (Texas) with initial stockig density of 530/m3

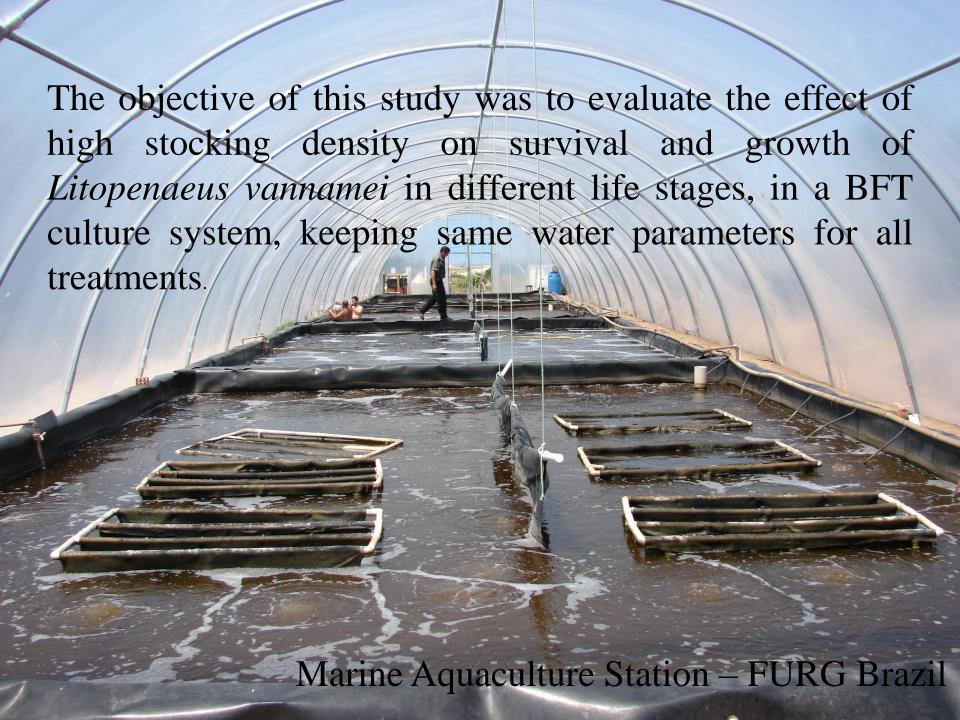
Is it possible to improve productivities in raceways????

PARTIAL HARVEST WITH BFT, A PROMISING SYSTEM FOR PACIFIC WHITE SHRIMP

Nyan Taw*, Hendri Fuat, Naira Tarigan & Kaesar Sidabutar Global Group, Indonesia

Partial Harvesting with Cast Nets

Table 1. Partial harvest performance with biofloc technology (February-July).


	Harvest Power Efficiency						fficiency					
		Power	Density		Davs of			Production	F	CR		hp)
Pond Size	System	Input (hp/ha)	(m ²)	Partial	Culture		Weight (g)	(kg/ha)	G.P.	Feed	Capacity	Efficiency
1	1 Phyto- 27 (PW)	100	1	118	434	21.28	19,439	0	1.60	560	720	
5,896 m ²	plańkton	27 (1 ٧٧)	100	Final	127	11,027	23.26	12,132	Ŭ	1.00	300	720
2				1	108	2,092	16.95	22,910	0.59	1.20	680	739
5,896 m ²	Biofloc	31 (PW)	145	2	121	1,016	18.18					
5,890 m²				Final	131	10,400	19.23					
				1	109	2, 108	17.86					
3	Biofloc	30 (PW)	146	2	122	999	20.00	24, 219	0.56	1.14	680	807
5,940 m ²				Final	130	11,279	21.28	1				
	4 4,704 m ² Biofloc	34 (PW)		1	85	1,962	10.75	38,229	0.58	1.12	680	1,124
			257	2	99	1,896	13.33					
				3	113	1,871	16.13					
4,704 m ²				4	127	2,587	17.86					
				5	134	2,475	18.87					
			·	Final	155	7,192	21.28					
				1	84	924	11.63					
				2	99	1,455	13.51					
5	D:-4	36 (PW)	200	3	113	1,324	16.39	40 404	0.40	1 1 1	600	1 021
2,500 m ²	Biofloc	12 (BL)	280	4	127	1,448	17.54	49,484	0.48	1.11	680	1,031
			\ /	5	134	1,043	18.52					
				Final	155	6,177	20.00					
6 Biofloc	26 (PW)		1	110	1,666	19.61	26,180	0.50	1.10	680	655	
			2	124	367	20.41						
2,500 m ²		12 (BL)		Final	127	5,012	21.28					
_	26 (5)110		1	110	892	16.39						
2 500 3	Biofloc	36 (PW)	145	2	124	323	17.54	26,460	0.50	1.10	680	551
2,500 m ²		12 (BL)		Final	130	5,400	18.52	·				

PW = Paddlewheel aerators, BL = Air blowers

Otoshi et al 2007:

Shrimp Behavior May Affect Culture Performance At Super-Intensive Stocking Densities

... the results showed that crowding behavior associated with high density may have negatively impacted shrimp growth, irrespective of water quality.

Southern Brazil

UNIVERSITY OF RIO GRANDE INSTITUTE OF OCEANOGRAPHY

Laboratories:

Crustacean Biology, Ecology of Benthic Communities, Marine Mammals, Coastal Management and Ecology, Ictiology, Fisheries Resources and Technology, Phytonkton and Zooplankton, Hydrochemistry, Marine Biochemistry...MARINE AQUACULTURE (50 researchers)

MARINE AQUACULTURE LABORATORY

Heterotrophic Culture Systems

Estação Marinha de Aquacultura - FURG - Brazil

Experiment 1 – Effect of stocking density in Nursery

Materials and Method

Post-larvae (0.003 g)

Density: 4,400, 8,800, 13,200 and 17,600/m3

Microcosms; 170L Tank

Feeding: 3 X day, in feeding tray (40 CP)

The experiment lasted 30 days

Results Experiment - 1

Nursery - Initial weight 0,003 (0,001)

PLs/ m3	Final Weight (g)	Survival (%)	Final Biomass (kg m ⁻³)	Final density
4,400	0.45 0.12°	96.26 2.26 a	1.90 0,09 a	4,224
8,800	0.33 0.13 ^b	95.55 6.13 a	2.75 0.12 b	8,360
13,200	0.30 0.09 ^b	95.49 2.23 a	3.60 0.21 °	12,540
17,600	0.23 0.09°	87.60 5.16 ^b	3.51 0.27°	15,312

Experiment 2 – Effect of stocking density in Grow-out (1g – 6g shrimp)

Experiment 2: Grow-out

L. vannamei juveniles with 1.23g (± 0,09) were reared in different stocking densities: 880, 1,320, 1,760, 2,200 and 2,650 shrimp/m³, during 40 days.

Experiment 2 – Grow-out -

Shrimp/ m ³	Final weight (g)	Survival (%)	Final biomass (kg/m3)	Final density Shrimp/m ³
880	7.53 0.83°	89.33 4.71 a	5.91 a	785
1,320	7.23 0.91 ^b	91.11 14.73 a	8.67 b	1,203
1,760	6.74 0.97°	89.89 13.81 a	10.63 ^c	1,570
2,200	6.12 1.05 ^d	68.60 10.58 ^b	9.23 bc	1,499
2,650	6.06 1.12 ^d	62.96 1.11 b	10.04°	1,641

Experiment 3 – Effect of stocking density in Grow-out (6g – 12g shrimp)

Experiment 3: Grow-out

L. vannamei juveniles with **6.32g** (± 0.7), were reared in different stocking densities: 590, 880, 1,180, 1,470 and 1,760 shrimp/m³, during 40 days.

Experiment 3 – Grow out

Stocking density Shrimp/m ³	Final weight (g)	Survival (%)	Final biomass (kg/m³)	Final density Shrimp/m3
590	11.42 0.98°	90.63 3,23°	6.06°	529
880	10.52 0.87 ^b	95.11 4,22°	8.79 ^b	838
1180	10.64 1.07 ^b	91.33 3,78°	11.19 ^c	1070
1470	10.9 1.23 ^b	63.06 5,43 ^b	10.04°	926
1760	10.01 1.67 ^b	54.06 3,42°	9.49 ^b	952

Experiment 4 – Effect of stocking density in Grow-out (12 – 18g shrimp)

Experiment 4: Grow-out

L. vannamei juveniles with **11.96g** (±1.14), were reared in different stocking densities: 440, 880, 1,320 and 1,760 shrimp/m³, during 40 days.

Fase Engorda 3 - peso inicial 11,23 (1,14) nas densidades: 150, 300, 450 e 600 camarões/m²

Tabela 4. Médias e desvio padrão do peso final, sobrevivência, biomassa final e densidade final dos camarões *L. vannamei* com peso médio inicial de 11,96 g (1,14) cultivados por 45 dias em diferentes densidades no sistema heterotrófico

Initial stocking	Fianl weight	Survival	Final biomass	Final density
density/ m ³	(g)	(%)	(kg m ⁻³)	Shrimp/m ³
440	17.58 1.88°	99.1 1.15 a	7.62 a	436
880	15.65 1.89 ^b	97.55 4.04 a	13.18 ^b	855
1320	15.45 1.91 ^b	75.1 15.70 b	14.94 °	992
1760	15.35 1.97 ^b	49.33 21.0°	13.26 ^b	864

According to results, if excluded water quality factors, is possible to culture *L. vannamei* in following stocking densities

Nurseries – 4,400/m3 (until 1 g) – 1.90 kg/m3

Grow-out -1,760/m3 (until 6 g) -10.63 kg/m³

Grow-out – 1,180/m3 (until 12 g) – 11.19 kg/m3

Grow-out - 880/m3 (until 16-18 g) - 13.18 kg/m3

Conclusion

The results confirmed the negative effect of stocking density for different life stages of *Litopenaeus vannamei*;

It is also confirmed that is possible to culture *L*. *vannamei* with biomass higher than 14 Kg/m3

Acknowledgements

Secretaria Especial de Aquicultura e Pesca

UNIVERSIDADE FEDERAL DO RIO GRANDE - BRASIL

Thanks for your attention!

manow@mikrus.com.br

